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PREFACE

The work reported herein was conducted bv the Arnold Engineering Development
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presented were cbtaned by ARD, Inc.. AEDC Group (a Sverdrup Corporation Company),
operating contractor for the AEDC, AFSC, Amold Air Force Station, Tennessee, under
ARO Project Number P43T-07. The manuscript was submitted for publication on
November 7, 1980,
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1.0 INTRODUCTION

The potentiat flow computer program (PFP) described in Ref. 1 has been used
frequently for uerodynamic analyses in support of testing at the Arnold Engineering
Development Center (AEDC). In one particular application, the mvestigation of the gun
gas ingestion for the A-10, the airplanc was symmetric but the gun was off center. The
completely symmetric model required four hours of IBM 370/165 computer time to run
on the PEP. To obtain a solution with the gun off center would have required about
thirty hours per run. Thus rush project motivated a quick analysis of symmetry properties
which resulted tn a procedure whereby the off-center runs could be made in seven hours.
About ten such runs were made. After the project was completed, a general method was
developad as a spin-off under a computational fluid dynamics project.

Symmetry is commonly used to cut computation time, however, it is usually an
all-or-nothing proposition. This need not be the case for vortex Ilattice computations. if
the model has a nonsymmetric portion and/or if the boundary conditions are not
symmetrie, the symmetry of the system can still he used to advantage. not only n
computation of the coefficients of the lincar algebraic system, but also in its solution.
Computation tune for a completely symmetric system is reduced, compared to that for
an asymmetric system of the sume size, by a factor of eight for one plane of symmetry.
If there are two or three plunes of symmetry. the factors are 64 and 512, respectvely. If
the system 15 only partially symmetric, the corresponding factors may still be as high as
4, 16, anc 64.

Section 2.0 presents the method for taking advantage of partial symmetry. Beginning
with the pertinent information on the vortex lattice method, 1t shows how the algebraic
system representmg a symmetric geometry satisfies certam symmetry conditions. If the
geometty s only purtially symmetric. the algebrarc system can be partitioned so that one
portion satisties the symmetry conditions. The symmetry conditions can be used 1o
produce a quicker solution of the symmetnc portion of the system. Section 3.0
summanzes and does an operation count whicl verifies the value cf the method.

[ the present domain of application. the number of planes of symmetry, A, 18
meaningful only for A = 1. 2. or 3. Mathematically. however, the method peneralizes to A
being an arbitrary positive integer. The validity of the method and existence theorems on
ihe mverses mvolved can then be proved by mathematical induction This mathematical
analysis s presented 1 the Appendix.
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2.0 METHOD
2.1 VORTEX LATTICE METHOD

The vortex lattice method (Ref. 1} models the boundary of a flow regime with N
singularities, either vortices or sources. Each singularity induces flow with velocities
proportional to its strength. The resultant flow is the superposition of the flows
corresponding to zll the singularities and an optional free stream. The strengths of the N
singulanties are determined by imposing boundary conditions at N points called control
points. This produces a linear system of N algebraic equations

AX=R (1)

to be solved for the unknown strengths, X.

The equations for the coefficient matrix, A, and the right-hand side, R, are not
pertinent to this analysis, but the fact that the coefficient matrix is determined only by
the geometry of the boundary is crucial to the development. This fact will be used in
Section 2.3 to derive symmetry conditions which are present in A f symmetry exists.

Assume that the boundary has a geometrically symmetric portion made up of M
singularities and an asymmetric portion made up of p singularities, so

N=M+p (2)

then the system of equations, Eq. (1), can be partitioned to take the form
= {3

where AisMxM,BsMxp CispxMDispxp, Xis M x I, Yispx 1l RisMx
I, and § 1s p x |. Under such a partition, the matrix A can be constructed so that 1t
satisfies the symmetry conditions.

Equation (3) can be written
AX + BY = R (4)

and

CX + DY =§S (5)
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The purpese of the method being presented is to use the symmetry conditions present in
A to effect a fast solution of Eq. (4) for X in terms of Y, obtaining

X=r1r—0bY (6)
Equation {6) can then be substituted into Eq. (5) to obtain

D —C» Y =(8 - Cn (7)

and Gaussian elimination can be used on Eq. (7) to selve for ¥. The Y can be substituted
into Eq. (6) for the complete solution.

Some discussion is needed on the existence of the solutions. Equation (1) has a
solution if A is nonsingular. The step from Eq. (4) to Eq. (6) cun be taken if A is
nonsingular, If A and A are nonsingular, then the matrix, {D — Ch), of Eq. (7} s
nonsingular, The matnx, A. will be nonsingular if the system has been modeled correctly.
The matrix. A. will be nonsingular if the symmetric porticn has been modeled correctly.
In general, if a coefficient matrix is singular or even ill-conditioned 1t is because the
system has been improperly modeled.

2.2 NUMBERING THE SINGULARITIES

The vortex model is composed of either vortices or sources commonly called
singularitivs because the corresponding velocity functicns are singplar at their centers (not
to be confused with matnx singularity). The partitioning of the system depends on the
ordering of these singularities. The following numbering scheme will be used. Let A be
the number of planes of symmetry, A = 1, 2, or 3. If A = 1, then the symmetric portion
of the vortex model can be divided into two parts. One part will be called the basis and
the other its reflection. If A = 2, then the symmetric pertion can be divided nte four
parts, one basis and three reflections. If X = 3, there are eight parts with one basis and
seven reflections. Let A be the number of parts, then

A= 2k (8}

Let n be the number of singulantics in the basis: then the number of singularities in the
symmetric portion 18

M = An (9)

Let the plunes of symmetry be represented by Pg. where £ = 1 to A, The singularities of
the basis will be numbered trom | to n. The reflection of the i'th singularity. 1 <1 < n.
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with respect to Py will be numbered n + |. For A > 1. the reflection of the i'th
singuiarity, 1 < i < 2n, with respect to P will be numbered 2n + i. For » > 2, the
reflection of the i'th singularity, 1 <1 < 4n with respect to P; will be numbered 4n + 1.
As already implied by the form of Eq. (3), the nonsymmetric portion will be numbered
from M+ 1 to N.

With this numbering systcm, the muatiices, A. X, B. and R can be partitioned with
respect to the A parts

A= ((Au)) X ((X‘))

(R0)

(10)

B = ((B,)) R

where i. j = 1 to A. Ayisnxn, Xjisnx 1, B isnxp.and R, is n x 1. With this
partition, Eq. (4) can be written

A
Zl Ay X + B Y =R, (113
j:
with i = | to A. As a special case, if there is no nonsymmetric portion. then Eq. (11)
takes the form
A
EI Ay X = R, (12)
1=
with i = 1 to A and there will be no Eq. (5). This report offers no new approach to the

other special case of no symmetric portion. therefore, it will not be considered.

Regarding notation, it will at times be convenient to add a superscript to a variable
(ndicating the number of plancs of symmetry, A. This appendage will 11 no way alter the
defimition of the variable.

23 SYMMETRY CONDITIONS FOR A

Since A 1s the coefficient matrix for the symmetric portion and it depends only on
the boundary of the system, certain deductions about its internai form can be made.
These symmetry conditions will now be derived.

Each part of the symmetnic portion has a corresponding part with respect to each
plane. the ccrresponding part being its rcflection with respaet to that plane. A table can

be made of these corresponding parts, which is determined by the numbering system of
Sec. 2.2.
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Table 1. Corresponding Reflected Parts

The table for A = 1 is above and to the left of the first bold line. and the table for
A = 2 15 above and to the left of the second bold line, The third bold line marks the
table for A = 3.

A piven matrix, A,. depends only on the geometry of parts 1 and j and their relative
position. Given a plane of symmetry, Pg, if i’ and j are the corresponding parts of i and j
with respect to Pg, then parts 1" and ' (since they are reflections) have the same
gecometry and relative positions as do parts i and j. Therefore, A, )" = A;;. Such a relation
can be written for each submatrix, A, of A with respect to each plane of symmetry, Pyg.
Thus. there are A(AJ? such relations. For example, when X = 2, the relations for the first
row of A are

P; Rulations P; Relitions
Al = An Ayl = Az
Aja = Agy Arz = Asy
Az = Axs Az = Azl
Ay = Az Arr = Ay

For » = 2, therc are 24 more relations which have not been written out, For a piven &, if
all the relations (not all are independent) are written out, A can be written in terms of
the submatrices, Af}, of the first row. Define

A= Ay, (13}

Then the torm of A for A= 1, 2, and 3 is
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Al = (14)

[ Ay Ag As Ay

Ao Al Ay Aj

A2 = (15)
Aj Ay Al Ay

and

Al = (16)

A pattern can be noticed in AK; namely, if A2 and A3 are partitioned as shown, then
each partition, large or small, has the same form as the right-hand side of Eq. (14). This
is the essence of a recursion procedure for generating A* in the Appendix.

2.4 SYMMETRY CONDITIONS FOR R

It is not necessary for the boundary conditions to be symmetric to use the solution
of Section 2.5, In fact, symmetry of the boundary conditions is of na practical advantage

10
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except in the special case, p = o. In that cusc. if R satisfies the symmetry conditions,
there is an additional timesaving factor of A n the solution. :

Boundary cenditions. with respect to a plane, can be either symmetric (S-symmetry)
or antisymmetric (A-symmelry). As an illustration. for A = L il a plane is symmetric, then

Ry = Ry

and if it is antisymmetric, then

R;_ = —R\

Since each planc can be either symmetric or untisymmetric. there are A possible
combinations. The possibilities are shown in Table 2.

Table 2, Types of Symmetry

Plane A =1

=
1]
ra
=4
Il
[

Y]
N
Lh
[+
-]
o0

ME* 1 2

The canvention for using Table 2 for A = 1. 2, or 3 15 above and to the left of the
indicated bold line, and is the same as explained lor Table 1. Table 2 can be used to
construct a reflection matrix

n = (in,}) (17)

i.j =1 to A. The clements of n are plus or minus ones. The first row consists of plus
ones. The sccond row of 1 1s determined trom the first row und the Py row of Table 2.
An S n Table 2 means copy from the first row. and an A means copy with a change of
sign. This process 15 analogous to the reflection of the basis with respeet to P For A >
1, the third and fourth rows of » are determined from the first two rows and the Py row
of Tuble 2, An S in Table 2 means copy from the first two rows and an A means cony
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with a change of sign. This 1s analogous to the reflection of the first two parts with
respect to Py to obtain parts three and four. For X > 2, rows five through eight are
obtained from the first four rows and the Py row of Table 2 in like manner: this is
analogous to the reflection of the first four parts to obtain parts five through eight. By
these rules, the following is obtained:

nl = (18)
1 -1
(1 1 1 0]
] -1 1 -1l
n? = (19)
1 I -1 -1
1 -1 -] 1 _]
and
R TS R T DR TR TR
1 -1 1 -1 .| 1 -1
1 S I 1 -1 -
] -1 -l 1 | Y I 1
n - (20)
] 1 ] 1 -1 -1 -1 -]
] -1 J I 1 - 1
1 | L e B | 1 |
| -1 - I -1 1 1 -1
i J
Some uscful properties of 1 are noted. It is symmetric
n* = n (21)
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where the asterisk indicates the transpose. Its inverse 1s given by

wl= o (22)

This is proved in Theorem 1 of the Appendix. The reflection matrix is an example of a
Hadamard matrix, (Refs, 2, 3. and 4). A Hadamard matrix is a square matrix of plus and
minus ones such that

HH* = m |

wlhere m1 is the order of the matrix.

Having available the reflcction matrix, the symmetry conditions for R are simply
stated. If the boundary conditions have symmetry of the j'th type. then

RI = 771) Rl (23)
fori=1to A.
25 SOLUTION

As stated in Scetion 2.1. the objective of this report is a quick solution of Eq. (4).
Sections 2.2. 2.3. and 2.4 were in preparation for this solution. To this end. Eq. {11) is
multiplied by ny; and summed with respect to i to obtain

A A A A
2 oA X+ I B Y Zomg R (24)
1=1 _]—l. i=1 i=1
for k =1 to A. Define
_ A (_’5)
Qi 1=El T Ay -
1 A ,
B = El M % (26)
1 H
IGR = A |§l M, B, (27
1 ) ~
pe = % I ot By (28)



AEDC-TR-B0-67

and the corresponding matrices

a.= ((ak) 6 = {(6x))
B = (b)) p = ((ox))

(29)

with k, j=1 to A.

Fundamental to the solution is

ax) = Mkj Gkl (30)

k, j = 1 to A. This can be verified by obtaining the product nA. Except for the sign, the
elements of a given row are the same, and the signs of corresponding elements of » and a
are the same. The formal proof of Eq. (30) is given in Theorczm 3 of the Appendix. Using
Eqgs. (25) through (30), Eq. (24) becomes

ag1q Bk + [)'5; Y = Pk (3])

for k = 1 to A. Thus, instead of solving Eq. (4} which has M rows, there are A systems
of the form of Eq. (31), having n rows each. This can result in a considerable savings, as
will be seen in Section 3.0. Equation (3!) can he solved for 0y if agq is nonsingutar. In
Theorem 4 of the Appendix, ayx;, k = | to A are shown to be nonsingular if A is
nonsingular, Thus, &, can be written in terms of Y

O =T - B Y RS
for k = 1 to A, Numercally, it is much more efficient to form the matrix

[t} px i 8] (33)
and solve by Gaussian elimination than to invert ay,.

Having & in terms of Y, X can be obtained in terms of Y from Egs. (26) and (22):

Xi=

U o g

Mk Bk (34)

k=1

1=1to A. From Egs. (10), (34), and (32), the r and b of Eq. (6) can be assembled as

r =((k%1 ik ?k)) (35)
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and

b =((k§1 r Br«)) (36)

This completes the solution promised in Scction 2.1.

There remains the special case, p = o. Applying the same procedure to Eq. (12)
produces

akr Ok = py (37

mstead of Eq (31) for k=1 to A There s an added benefit 1if R satisfies the symmetry
conditions. Assume the boundary conditions have symmuetry of the j'th type, substituting Eq.
(23)into {28), and wsing Bq. (22) gives

o = b1, Ry (38)

k=1 to A, where 8y, is the Kronecker Delta. S0 p = c, implying 8, = o for all k
except k = j. Thus, Eg. (37) necds to be solved only for k = j. As a side note, the
boundary conditions do not have to be symmetric with respect to all the planes of
symmetry to be beneficial. Each plane for which the boundary conditions have either
S-symunetry or A-symmetry eliminates half of the systems, Eq. {37).

3.0 SUMMARY

The algorithm can be desenbed as follows. Given A. R, A, n. and p, the following
steps are performed.

1. Compure a. Eq. (25).

2, Compute 3. Eg. (270

3. Compute p, Eq. (28
4, TFork =1 to A, apply Gaussian elimination to the matrix of Eq. (33).
5. Compute r, Eqg. (35).

. Compute b, Eq. (36).

7. Compute the system of Eq. (7).

15
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B. Solve the system for Y using Gaussian elimination.

9. Compute X, Eq. (6).

The time required to perform this task depends on the number of aperations, ie.,
additions, subtractions, multiplications, and divisions, Different operations require
different times, and even the ratios of times vary with computer. Considering parallel
processors, how well a method vectorizes must be taken into account. Such a detailed
accounting seemed to be a diversion, so the rudimentary convention of Ref. 5, counfing
only multiplications and divisions, will be followed.

The first savings from symmetry come in the computation of the coefficient matrix.
Equations (14) through (16) show that only A of the (A)? submatrices of A need to be
calculated. Similarly, if R satisfies the symmetry conditions, Eq. (23), only one of the A
submatrices of R need be calculated.

[n the solution, Step 1 requires only additions and subtractions, with 1 just
supplying the signs. The same can be said for Steps 2 and 3, except Step 2 has Mp
divisions by A, and Step 3 has M divisions by A. According to Ref. 5, the number of
operations to perform Step 4 is

1 3 1
A[Tn3+(p+l)n ——3—n]

Steps 5 and 6 require only additions and subtractions. In Step 7, the computation of Cb
requires Mp? multiplications, and the computation of Cr requires Mp multiplications.
Step 8 requires

1 1
= P tpl - 5

operations. Step 9 requires Mp multiplications. The total number of operations, Ny, is

Ni = 5 An® + A + 2 Ap
+ Anzp + Anp? + 3Anp (39)
1 1
+ o pP hpt -

If Eq. (1) were solved directly, the number of operations, N7, would be

t 1
N2 =5 M+ p)P + M+ pP+ — M=+ p)

or

16
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Ns = — A%nd + A2n2 — -1 An
3 3
+ AZnZp + Anp? + 2Anp (40)
( . I
+ 5 p2+tpl - 3 op

The number of operations saved 18

Ny = Ny = 5 (A - DAGAT D

+An [(A ~ 1 n - 1]+ b (41)

Equation (41315 a measurc of the value of cxploiting nartial symmetry.

Often, exploiting symimetry is not juslt a timesaver. Many times it is a matter of

whether or not 2 job can be done; the factor of 8* pushes it bevond the realm of
practicality,

[
)
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APPENDIX A
MATHEMATICAL ANALYSIS

Definition 1: Super Symmetric Block Matrix (S5BM)

Givenn=1, A 2 o and

S ={&d|& is an n x n matrix

A sequence of sets 5, j = 0 to A can be defined using the following recursive

procedure
e 5, =13

~

!i K Ae SJ-I
s

i=1to A If AeS,, then A) s called a super symmetric block matrix of order

j. It van be noted that

® If A and A* are SSBM's of order k. then

Ak Ak
Ak+1 = (A1)

A% Ak

is an SSBM of order k + 1, and A¥ + A¥ and A* - A¥ arc SSBM'S of order k.

o Al A2 and A of Eqs. (14) through (16) are SSBM'S of orders 1. 2. and 3.

respectively.

Defimtion 2. The Reflection Matrix

Given A 2 o. A sequence of matrices /. j = ¢ to A, can he definad using the

following recursive procedure:

1]
-

n()

(A-2)

19
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j =1 to A. The matrix #* is called the reflection matrix of order A. It can be
verified that o', 72, and n3 of Egs. (18) through (20} are the reflection
matrices of order 1, 2, and 3, respectively. 1t is easily proved that the first row
and column of a reflection matrix consist of plus ones.

Lemma: Let

E = (A-3)
G G

where F and G uare arbitrary n x n matrices. The block matrix, E, is nonsingular if and
only if F and G are nonsingular; if nonsingular, then

Bl G- (A-4)
E-l = l )
2 F1 g1
Proof: Note that
F 0 I 1
F F| _
G -G
0 G ||

where [ is an n x n identity matrix and 0 is an n X n zero matrix.

Since

is nonsingular, E is nonsingular if and only if F and G are nonsingular. If F and G are
nonsingular, Eq. (A-4) can be easily verified.

Thecrem 1: The reflection matrix of order A\ 1s nonsingular and its inverse is given by

1 -
SR (AS)
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where A = 24,

Proof® The theorem 1s obviously true for A = o since A =1 =1 Assume the theorem is
true for A = k for some k 2 o. Applying the Lemma to Eq. {A-2) and substituting Eq.
(A-5) into the result produces

Sk ph 2k
Ryl =

2| —

Xhogh 2k gk

Fuctoring out the 28 1t is seen that the theorem is true for X =k + 1 and thus for all A.

There is occasion in the following analysis to take the product of n and a block
matrix. The clements of one are scalars and the elemenis of the other are n x n matrices.
Since the product of a scalar and a matnx is defined, the product of n with a block
matrix can be defined in the normal manner.

Theorem 2: A block matrnx. A, with n ¥ n blocks 1s an SSBM of order A if and only if

A = (! D gt (A-6)
or by Theorem 1
1
;’\=—nan]\ . (A_';)
A

where D is a block diagonal matrix, that is

D = *._. (A-8)

where Dyyg= 1 to A ure o x n.

Proof The theorem is obviously truc for A = o, smce n° = ! so A = D. Assume the
theorem 15 true for A = k for some k 2 o. Given an arbitrary D of the form of Eq. {A-8)
with A = 2k leads to the definition

D = Duag (D, . ... Dy,) (A-9)

and
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D = Diag (Dynsrs - . ., Du)
g A A+ L A (A-10)
and Eq. (A-8) can be written
D 0
D = (A-1D)
0 D
Equation (A-7) then becomes
A o I R UL
AT T g | o DY |n¢ (A-12)
which can be wntten
A A
where
- I D+D
A=— gt k (A-14)
L ( : ) ,
and

. 1 D - D\
A=;nk( > )ﬂ“ (A-15)

The quantitics in parentheses are obviously block diagonal matrices; thus. since the

theorem 1s assumed true for X = k, the matrices A and A zre SSBM's of order k. Thus,
by the Torm of Eq. {A-13), the muatnx A 15 an SSBM of order A = k + 1.

Assume A is an SSBM of order X = k + 1: then A can be wrniten

A A
A= TA =

where A and A are SSBM's of order X = k. Since the theorem 1s assumed to be true for A
= k’

[
b2
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b
il
B
3
Eol
v
=3
~

and

}’g=_nank

where D and D are block diagonal matrices. By matrix algebra, it can be verified that

1
A = k+1 D pk*l
kel ! K

where

D+D 0
0 D-D
Thus, assummg the truth of the theorem for A = k, 1t is true for A =k + 1, and thus for

all A.

Corollary 17 A is u nonsingular SSBM, then so is its inverse.

Proof: Since A 15 an SSBM
A=n1Dnq

where D 1s a block diagonal matrix. lis inverse is

A'l = n"] D_I 1?
Smce D! is also a block diagonal matrix, A-! is an SSBM.

Theorem 3- Given
a = {{g;)) = nA (A-16)
with j, k=1 to A whare A is an S58BM. Then
QG = e ay (A-17)
Proof* Since A is un SS8BM, substituting Eq. (A-6) into (A-16) produces

a = np! Dn) = Dy
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where D = Diag (D;,....,.D, ) with Dy, j = 1 to A, being n x n matrices. Therefore,
gk = (D) = D (A-18)
when k = |
app = Dy gy = Dy (A-19)

since the first column of n consists of plus ones. Subsituting Eq. (A-19) into (A-18)
produces the desired result, Eq. (A-17).

Theorem 4: Given
a = nA (A-20)

where A is a nonsingular SSBM, the block matrix a is abviously nonsingular, so let

NS R A-21
al = 7\_ ((ajl:]) ( )
Then,
ajk = a‘klj (A-22)
or by Theorem 3
G = Mk aily (A-23)
Proof" Since A is an SSBM,
a=nn'! Dn)=Dn
and
-l = gl DL o= L -1
a'!l =n = A n D
Therefore, by the form of Eq. (A-21)
Ejk = (7? D.l)Jk
or
Gk = ni O (A-24)

The desired result. Eq. (A-23) is created when Eg. {(A-19) 1s substituted :nto Eq. (A-24).
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NOMENCLATURE

Coefficient matrix for the symmetric portion of the model. Eq. (3)
Submatnx of A, Eq. (10)

Ay, Eq. (13)

Coefficient matrix for the whole system, Eq. {1)

Submatnx of A, Eqg. (3)

Submuatrix of B, Eq. (10)

Eqgs. (&) and (36)

Eq. (32)

Submatrix of A, Eg. (3)

Coefficient matrix for the nonsymmetric portion of the model, Eq. (3). In the
Appendix, D is a block diagonal matrix

Ideritity matrix

Number of singularities in the symmetric portion of the model, Eq. (9)
Number of singularities in the whole model, Eq. (2)

Opcrution.count using symmetry, Eq. (39)

Operation count neglecting symmetry, Eq. (40)

Number of singularitics in the basis of the symmetric portion of the model
2'th plane of symmetry

Number of singularities in the nonsymmetric portion of the modsl

Right-hand side for the whole system, Eq. (1)

Eqgs. {0} and (39)

Right-hand side for Part i, Eg. (10)

Eqg. (32)

Right-hand side for the symmetric portion of the model, Eq. (3}
Right-hand side for the nonsymmetric portion of the model. Eq. (3)

Strengths of the symmetric pertion of the model. Eq. (3)
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X, Strengths of Part i, Eq. (10)

X Strengths of the whole system, Eq. (1)
Y Strengths of the nonsymmetric postion of the model, Eq. (3)
a Eq. (29)

a, Fq. (25)

8 Eq. (29)

B Eq. (27)

8, Kronecker Delta, Eq. (38)

] Reflection muatrix, Section 2.4

mj Elements of 5, Eq. (17)

6 Eq. (29)

9 Eq. (26)

A Number of purts, Eq. (8)

A Number of planes of symmetry

P Eq. (29)

oI Eq. (28)

NOTATION

(()) Denotes a matrix with the elements indicated
SYMBOLS

* Denotes the transpose

-1 Denotes the inverse

Any superscript on a variable other than "s'" or "-1" does not alter the meaning of the
variable, but refers to the number of planes of symmetry, A.
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